18.100A PSET 5 SOLUTIONS

DAVID CORWIN

GENERAL COMMENTS

A lot of solutions were correct but significantly more complicated than
what was necessary.

PROBLEM 1

(a). Since I is a compact interval, the hypothesis implies that f(I) is a
compact interval, i.e., f(I) = [¢,d] for some real numbers ¢ < d. But then
¢ < f(z) for all x € I, and d > f(x) for all x € I. At the same time,
c€le,dl = f(I)and d € [¢,d] = f(I), which by the definition of f(I) means
that the values c and d are achieved by f in the interval I. This means that

¢ and d are the minimum and maximum, respectively, of f on the interval
1.

(b). Let I = [a,b]. As f(I) = [c,d] for some ¢ < d in the reals. Therefore,

c < fla), f(b) < d.

We now divide into two cases, depending on whether f(a) < f(b) or

f(0) > f(a).

If f(a) < f(b), then the interval [f(a), f(b)] is contained in the interval
[c,d]. But [¢,d] = f(I), so every value in [f(a), f(b)] is attained.

f
If f(b) < f(a), then the interval [f(b), f(a)] is contained in the interval
[c,d]. But [e,d] = f(I), so every value in [f(b), f(a)] is attained.

PROBLEM 2

As the function is continuous on [0, 1], we know it is uniformly continuous
on that interval.
1



2 DAVID CORWIN

Now let € > 0, and let § > 0 such that |/ —/y| < € whenever |z —y| < &
and z,y € [0, 1].

Now let ¢’ = min(d, €).

We now show that for z,y € [0,00) such that |z — y| < &', we have
|V — \/y| < €. To show this, we divide into two cases.

If z,y € [0,1], they we are done, because |z — y| < §’ < 6.

If one of z and y is greater than 1, then \/z 4+ /y > 1. We have the
identity (v + /y)(v/x — \/y) = & — y. Therefore,

|x y| /
I <L — < e.
Vz — /Yl N v —y| < <e

. / - ..
As € was arbitrary, and ¢’ is positive, we are done.

PROBLEM 3

We fix € > 0. Let 6 > 0 be such that Inz < ¢ for all x € [1,1 + J].
If x,y € [1,00) such that 0 < z —y < §, then

an—lny| :lnl‘—lnyzlnx/y:ln <1+H> .
Yy

ButyZl,sox_y i
Y

< x —y < 9. Therefore, 1 + —= € [1,1 + ], so
Yy

|lInz —Iny| =1n <1+x—y> <e.
Y
As € was arbitrary, and ¢ is positive, we are done.

PROBLEM 4

(a). We extend f to a continuous function on [0,1]. We let f(z) = zsinl/z
for z € (0,1], and we set f(0) = 0. It is clear that f is continuous for
x € (0,1], because 1/x, sin, and x are continuous for such z.
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At x = 0, we note that —z < f(z) < x for x > 0, and hm:p- hn%) —z =0,
z—

—0
so the Squeeze Theorem tells us that hm+ f(z)=0. ThlS implies that f is
x—0

continuous at x = 0.

Now the extension is uniformly continuous by Theorem 13.5, which im-
plies that the original f, i.e., the restriction to (0, 1), is also uniformly con-
tinuous.

(b). We prove uniform continuity. Let e > 0. We take § = e.

But 2|zy| < 2% + 3%, so

ley —1] < 1+ |zy|
< 14 2[zyl
< 12?4y
< 1422 492 4 22y?
= (1+2*)(1+y?)
1—ay

It follows that

< 1. Therefore, whenever |z — y| < J,

(1+22)(1+9y?)
we have

I 0 = | T

a:—l—:vy2 B y—l—y:pQ
(IT+a22)(1+y?)  (1+2?)(1+y?)
x+ay? —y —ya?
(1 +22)(1+y?)
(z —y)(1 —zy)
(I+22)(1+y?)

1—=zy
(1+22)(1+y?)

= |z -yl

|z — y|
5

€.

VANVAN

This proves that f(z) is uniformly continuous.
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PROBLEM 5

(a). Let € > 0. Let § > 0 such that |f(x)— f(y)| < € whenever |z—y| < § for
x,y € I (which exists because f is uniformly continuous on I). Let N > 0
such that |an, — am| < § whenever n,m > N (which exists because {a,} is

Cauchy).

Then for n,m > N, we have |a, — an| < J, so |f(an) — f(am)| < €. Since
€ was arbitrary, we have shown that {f(ay)} is Cauchy.

1
(b). Let a, = — for integer n > 1. Then {a, } is a Cauchy sequence, because
n

it converges to 0 in R. Let f(z) = 1/x on I = (0,1]. If f were uniformly
continuous on I, then {f(a,)} = {n} would be a Cauchy sequence. But this
sequence is unbounded, a contradiction.

PROBLEM 6

Suppose that f is uniformly continuous on (a, b), but that f is not bounded
above. Then for any positive integer n, we can choose a,, € (a,b) such that
f(an) > n. We make such a choice for each positive integer n.

Then li_>m f(an) = n. We choose a subsequence {b,} of {a,} such that
n—oo

{b,} converges to an element of [a,b]. It follows that {b,} is a Cauchy
sequence in (a, b), so by part (a) of problem 5, we find that {f(b,)} must be a
Cauchy sequence. But {f(b,)} is a subsequence of {f(ay)}, so li_>m f(by) =

0o, which contradicts the claim that {f(b,)} is a Cauchy sequence. This
contradiction proves the result.

PROBLEM 7

Let f(x) =sinz. We must find n for which our error
| Rn(2)| = |sin — Ty ()]
is less than 1/1000 for |z| < 0.5. We have

(n+1)
f (C) xn—&-l

|Ry ()] = | oy

for some ¢ € (—0.5,0.5).
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For all n, we know that f™+1) is +sin or =+ cos, so |f"*(¢)| < 1. There-
fore,

(n+1)
f (C) In—i—l

n!

- ‘x|n+1 _ 1
“(n+1)! " 2r(n+ 1)V

| R ()] = ‘

For n = 4, we have 2"(n+1)! = 2(5!) = (16)(120) = 1920 > 1000, so the
error is small enough for n = 4.

In fact, T3(z) = Ty(x) in this case, so you only need the first three.
We also note that n < 3 does not work. For x = 0.4, we have sinxz =

0.38941---. Now Ti(z) = Ta(xz) = z, and for = = 0.4, this clearly does not
agree in the first four decimal places.

PROBLEM 8

(a). Let f(x) =sinz. We have

(n+1)
f (C) xn+1

[Ro()] = | -

for some ¢ € R.

For all n, we know that f™+1) is +sin or =+ cos, so |f"*(¢)| < 1. There-
fore,

f(n—i-l)(c) . \3;|”+1
R = |1 Hntl] < .
| B ()] ‘ al | S )
n
It suffices to show that h_)m u = 0 for all n. But this was Problem 10
n—oo M.

of the first problem set.

1
(b). We let f(z) = T2 We first prove:

_:L“

Lemma. We have f™ (z) = n!(1 —2)™'™™ for all n.

Proof. We use induction on n, starting at n = 1.

For n = 1, this is because f'(z) = (1 —z)72
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Now suppose it is true for n > 1. Then fO*Y(z) = (f™)(2) =
di (n!(1— :L’)_l_”) =nl(=1)(=1—n)(1—2)"2" = (n4 (1 — z)!~(+D)
x

by the lemma, as desired. O

For z € (—1,0], we have

f(n+1) (C) xn+1

Bal)] < |1

_ |(1 _ C)—Z—nxn+1|

for some ¢ € (x,0]. But 1—c¢ > 1, 50 |R,(z)| <= |(1—¢) "2 """ | < |z[? L.
Since |z| < 1, we find that this approaches 0 as n — co.

PROBLEM 9

Letting f(z) = 2® — 2z + 1, we compute

f(z) =2 —22+1

f(=1) =2
f'(x) =32% —2
fi(w) =1
f"(z) = 62
f'(=1) = -6
f"(x) =6
f"(=1) =6
fA) =0
fA=1=0

Taylor’s formula then tells us that

f"(=1)

2

(x+1)2+f”/(_1) ($+1)3+f(4)(_1) (IE+1)4

Ty(z) = f(=1)+f'(-1)(z+1)+ 6 24

Plugging in our values, we get

Ta(z) =2+ (z+1) = 3(x 4+ 1)* + (z + 1)
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PROBLEM 10

Lemma. If p(x) is a polynomial, and m an integer, then

lim ]@e—% =0.

z—0t+ ™

Proof. As we are showing the limit is zero, we may show that

X

lim p(z) —z
z—0t

=0.

Let n be the degree of p. Then there is a polynomial g such that p(1/z) =
q(z)z™".

As x — 07, we have 1/2 — 00, so

lim p—(m)e*%
z—0t | ™

= lim |[p(1/z)z™e™"|

T—00

m—n
oy la@em
T—$00 et

|m|+|n|
<y @) |
T—00 el

But e¢” grows faster than any polynomial, so the limit is zero. O

We now let

e = ifx >0

ﬂ@:{ql ifr =0

We will show

Lemma. For all integer n >0

e f is n-fold differentiable.
o fM(z)=0.

e There is a polynomial p, such that f(”)(:r) = pnigf)e*% for x > 0.
T

Proof. Our proof proceeds by induction on n.

For n = 0, the claims are clear, where p,(z) = 1.
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Now suppose it is true for n.

It is clear that f(™ is differentiable for # > 0, so f is (n + 1)-fold differ-
entiable for z > 0.

For x = 0, we have

(k) — 7(0)
(Y = fim I
(n)
= lim 7'}0 (h)
h—0 h
IERT pn(h) _
= A pentt
=0
by the previous lemma. This shows that f is (n+ 1)-fold differentiable even
at © = 0, and in fact it shows that f("*1(0) = 0.

Finally, for x > 0, we compute
d (pn(z) _1
(n)y/ = (& z
@) = g (et

_ o o—1d (pa(@)\  pa(x) d ¢ 1
- ldx<x2" >+ x2n dm(e )

o (@) = et @) | pale)
= e =« :174n T

g [(wzp%(rv) - 2nxpn(x)> N pn(x)]

r2n+2 r2n+2

= ¢ )

(T )

Therefore, taking p,,1(x) = z2p,(x) + (1 — 2nx)p,(z), our result is true.

O

We have now proven that our f is infinitely differentiable on its domain,
and that all of its derivatives are zero. Therefore, its Taylor series is zero.

However, the function is not zero, as seen by taking x = 1, for which we
get f(1) = 1/e. This implies that the function is not analytic.
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