18.100A PSET 5 SOLUTIONS

DAVID CORWIN

General Comments

A lot of solutions were correct but significantly more complicated than what was necessary.

Problem 1

(a). Since I is a compact interval, the hypothesis implies that $f(I)$ is a compact interval, i.e., $f(I)=[c, d]$ for some real numbers $c \leq d$. But then $c \leq f(x)$ for all $x \in I$, and $d \geq f(x)$ for all $x \in I$. At the same time, $c \in[c, d]=f(I)$ and $d \in[c, d]=f(I)$, which by the definition of $f(I)$ means that the values c and d are achieved by f in the interval I. This means that c and d are the minimum and maximum, respectively, of f on the interval I.
(b). Let $I=[a, b]$. As $f(I)=[c, d]$ for some $c \leq d$ in the reals. Therefore, $c \leq f(a), f(b) \leq d$.

We now divide into two cases, depending on whether $f(a) \leq f(b)$ or $f(b)>f(a)$.

If $f(a) \leq f(b)$, then the interval $[f(a), f(b)]$ is contained in the interval $[c, d]$. But $[c, d]=f(I)$, so every value in $[f(a), f(b)]$ is attained.

If $f(b)<f(a)$, then the interval $[f(b), f(a)]$ is contained in the interval $[c, d]$. But $[c, d]=f(I)$, so every value in $[f(b), f(a)]$ is attained.

Problem 2

As the function is continuous on $[0,1]$, we know it is uniformly continuous on that interval.

Now let $\epsilon>0$, and let $\delta>0$ such that $|\sqrt{x}-\sqrt{y}|<\epsilon$ whenever $|x-y|<\delta$ and $x, y \in[0,1]$.

Now let $\delta^{\prime}=\min (\delta, \epsilon)$.
We now show that for $x, y \in[0, \infty)$ such that $|x-y|<\delta^{\prime}$, we have $|\sqrt{x}-\sqrt{y}|<\epsilon$. To show this, we divide into two cases.

If $x, y \in[0,1]$, they we are done, because $|x-y|<\delta^{\prime} \leq \delta$.
If one of x and y is greater than 1 , then $\sqrt{x}+\sqrt{y}>1$. We have the identity $(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})=x-y$. Therefore,

$$
|\sqrt{x}-\sqrt{y}|=\frac{|x-y|}{\sqrt{x}+\sqrt{y}} \leq|x-y|<\delta^{\prime} \leq \epsilon .
$$

As ϵ was arbitrary, and δ^{\prime} is positive, we are done.

Problem 3

We fix $\epsilon>0$. Let $\delta>0$ be such that $\ln x<\epsilon$ for all $x \in[1,1+\delta]$.
If $x, y \in[1, \infty)$ such that $0<x-y<\delta$, then

$$
|\ln x-\ln y|=\ln x-\ln y=\ln x / y=\ln \left(1+\frac{x-y}{y}\right) .
$$

But $y \geq 1$, so $\frac{x-y}{y} \leq x-y<\delta$. Therefore, $1+\frac{x-y}{y} \in[1,1+\delta]$, so

$$
|\ln x-\ln y|=\ln \left(1+\frac{x-y}{y}\right)<\epsilon .
$$

As ϵ was arbitrary, and δ is positive, we are done.

Problem 4

(a). We extend f to a continuous function on $[0,1]$. We let $f(x)=x \sin 1 / x$ for $x \in(0,1]$, and we set $f(0)=0$. It is clear that f is continuous for $x \in(0,1]$, because $1 / x, \sin$, and x are continuous for such x.

At $x=0$, we note that $-x \leq f(x) \leq x$ for $x>0$, and $\lim _{x \rightarrow 0} x=\lim _{x \rightarrow 0}-x=0$, so the Squeeze Theorem tells us that $\lim _{x \rightarrow 0^{+}} f(x)=0$. This implies that f is continuous at $x=0$.

Now the extension is uniformly continuous by Theorem 13.5, which implies that the original f, i.e., the restriction to $(0,1)$, is also uniformly continuous.
(b). We prove uniform continuity. Let $\epsilon>0$. We take $\delta=\epsilon$.

But $2|x y| \leq x^{2}+y^{2}$, so

$$
\begin{aligned}
|x y-1| & \leq 1+|x y| \\
& \leq 1+2|x y| \\
& \leq 1+x^{2}+y^{2} \\
& \leq 1+x^{2}+y^{2}+x^{2} y^{2} \\
& =\left(1+x^{2}\right)\left(1+y^{2}\right)
\end{aligned}
$$

It follows that $\left|\frac{1-x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \leq 1$. Therefore, whenever $|x-y|<\delta$, we have

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\frac{x}{1+x^{2}}-\frac{y}{1+y^{2}}\right| \\
& =\left|\frac{x+x y^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}-\frac{y+y x^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \\
& =\left|\frac{x+x y^{2}-y-y x^{2}}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \\
& =\left|\frac{(x-y)(1-x y)}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \\
& =|x-y|\left|\frac{1-x y}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \\
& \leq|x-y| \\
& <\delta \\
& =\epsilon .
\end{aligned}
$$

This proves that $f(x)$ is uniformly continuous.

Problem 5
(a). Let $\epsilon>0$. Let $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$ for $x, y \in I$ (which exists because f is uniformly continuous on I). Let $N>0$ such that $\left|a_{n}-a_{m}\right|<\delta$ whenever $n, m>N$ (which exists because $\left\{a_{n}\right\}$ is Cauchy).

Then for $n, m>N$, we have $\left|a_{n}-a_{m}\right|<\delta$, so $\left|f\left(a_{n}\right)-f\left(a_{m}\right)\right|<\epsilon$. Since ϵ was arbitrary, we have shown that $\left\{f\left(a_{n}\right)\right\}$ is Cauchy.
(b). Let $a_{n}=\frac{1}{n}$ for integer $n \geq 1$. Then $\left\{a_{n}\right\}$ is a Cauchy sequence, because it converges to 0 in \mathbb{R}. Let $f(x)=1 / x$ on $I=(0,1]$. If f were uniformly continuous on I, then $\left\{f\left(a_{n}\right)\right\}=\{n\}$ would be a Cauchy sequence. But this sequence is unbounded, a contradiction.

Problem 6

Suppose that f is uniformly continuous on (a, b), but that f is not bounded above. Then for any positive integer n, we can choose $a_{n} \in(a, b)$ such that $f\left(a_{n}\right)>n$. We make such a choice for each positive integer n.

Then $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=n$. We choose a subsequence $\left\{b_{n}\right\}$ of $\left\{a_{n}\right\}$ such that $\left\{b_{n}\right\}$ converges to an element of $[a, b]$. It follows that $\left\{b_{n}\right\}$ is a Cauchy sequence in (a, b), so by part (a) of problem 5 , we find that $\left\{f\left(b_{n}\right)\right\}$ must be a Cauchy sequence. But $\left\{f\left(b_{n}\right)\right\}$ is a subsequence of $\left\{f\left(a_{n}\right)\right\}$, so $\lim _{n \rightarrow \infty} f\left(b_{n}\right)=$ ∞, which contradicts the claim that $\left\{f\left(b_{n}\right)\right\}$ is a Cauchy sequence. This contradiction proves the result.

Problem 7

Let $f(x)=\sin x$. We must find n for which our error

$$
\left|R_{n}(x)\right|=\left|\sin x-T_{n}(x)\right|
$$

is less than $1 / 1000$ for $|x|<0.5$. We have

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{n!} x^{n+1}\right|
$$

for some $c \in(-0.5,0.5)$.

For all n, we know that $f^{(n+1)}$ is $\pm \sin$ or $\pm \cos$, so $\left|f^{(n+1)}(c)\right| \leq 1$. Therefore,

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{n!} x^{n+1}\right| \leq \frac{|x|^{n+1}}{(n+1)!}<\frac{1}{2^{n}(n+1)!}
$$

For $n=4$, we have $2^{n}(n+1)!=2^{4}(5!)=(16)(120)=1920>1000$, so the error is small enough for $n=4$.

In fact, $T_{3}(x)=T_{4}(x)$ in this case, so you only need the first three.
We also note that $n<3$ does not work. For $x=0.4$, we have $\sin x=$ $0.38941 \cdots$. Now $T_{1}(x)=T_{2}(x)=x$, and for $x=0.4$, this clearly does not agree in the first four decimal places.

Problem 8

(a). Let $f(x)=\sin x$. We have

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{n!} x^{n+1}\right|
$$

for some $c \in \mathbb{R}$.
For all n, we know that $f^{(n+1)}$ is $\pm \sin$ or $\pm \cos$, so $\left|f^{(n+1)}(c)\right| \leq 1$. Therefore,

$$
\left|R_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{n!} x^{n+1}\right| \leq \frac{|x|^{n+1}}{(n+1)!} .
$$

It suffices to show that $\lim _{n \rightarrow \infty} \frac{|x|^{n}}{n!}=0$ for all n. But this was Problem 10 of the first problem set.
(b). We let $f(x)=\frac{1}{1-x}$. We first prove:

Lemma. We have $f^{(n)}(x)=n!(1-x)^{-1-n}$ for all n.

Proof. We use induction on n, starting at $n=1$.
For $n=1$, this is because $f^{\prime}(x)=(1-x)^{-2}$.

Now suppose it is true for $n \geq 1$. Then $f^{(n+1)}(x)=\left(f^{(n)}\right)^{\prime}(x)=$ $\frac{d}{d x}\left(n!(1-x)^{-1-n}\right)=n!(-1)(-1-n)(1-x)^{-2-n}=(n+1)!(1-x)^{1-(n+1)}$ by the lemma, as desired.

For $x \in(-1,0]$, we have

$$
\left|R_{n}(x)\right| \leq\left|\frac{f^{(n+1)}(c)}{n!} x^{n+1}\right|=\left|(1-c)^{-2-n} x^{n+1}\right|
$$

for some $c \in(x, 0]$. But $1-c \geq 1$, so $\left|R_{n}(x)\right| \leq=\left|(1-c)^{-2-n} x^{n+1}\right| \leq|x|^{n+1}$. Since $|x|<1$, we find that this approaches 0 as $n \rightarrow \infty$.

Problem 9

Letting $f(x)=x^{3}-2 x+1$, we compute

$$
\begin{gathered}
f(x)=x^{3}-2 x+1 \\
f(-1)=2 \\
f^{\prime}(x)=3 x^{2}-2 \\
f^{\prime}(x)=1 \\
f^{\prime \prime}(x)=6 x \\
f^{\prime \prime}(-1)=-6 \\
f^{\prime \prime \prime}(x)=6 \\
f^{\prime \prime \prime}(-1)=6 \\
f^{(4)}(x)=0 \\
f^{(4)}(-1)=0
\end{gathered}
$$

Taylor's formula then tells us that

$$
T_{4}(x)=f(-1)+f^{\prime}(-1)(x+1)+\frac{f^{\prime \prime}(-1)}{2}(x+1)^{2}+\frac{f^{\prime \prime \prime}(-1)}{6}(x+1)^{3}+\frac{f^{(4)}(-1)}{24}(x+1)^{4}
$$

Plugging in our values, we get

$$
T_{4}(x)=2+(x+1)-3(x+1)^{2}+(x+1)^{3}
$$

Problem 10

Lemma. If $p(x)$ is a polynomial, and m an integer, then

$$
\lim _{x \rightarrow 0^{+}} \frac{p(x)}{x^{m}} e^{-\frac{1}{x}}=0
$$

Proof. As we are showing the limit is zero, we may show that

$$
\lim _{x \rightarrow 0^{+}}\left|\frac{p(x)}{x^{m}} e^{-\frac{1}{x}}\right|=0 .
$$

Let n be the degree of p. Then there is a polynomial q such that $p(1 / x)=$ $q(x) x^{-n}$.

As $x \rightarrow 0^{+}$, we have $1 / x \rightarrow \infty$, so

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}\left|\frac{p(x)}{x^{m}} e^{-\frac{1}{x}}\right| & =\lim _{x \rightarrow \infty}\left|p(1 / x) x^{m} e^{-x}\right| \\
& =\lim _{x \rightarrow \infty} \frac{\left|q(x) x^{m-n}\right|}{e^{x}} \\
& \leq \lim _{x \rightarrow \infty} \frac{\left|q(x) x^{|m|+|n|}\right|}{e^{x}}
\end{aligned}
$$

But e^{x} grows faster than any polynomial, so the limit is zero.

We now let

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ e^{-\frac{1}{x}} & \text { if } x>0\end{cases}
$$

We will show
Lemma. For all integer $n \geq 0$

- f is n-fold differentiable.
- $f^{(n)}(x)=0$.
- There is a polynomial p_{n} such that $f^{(n)}(x)=\frac{p_{n}(x)}{x^{2 n}} e^{-\frac{1}{x}}$ for $x>0$.

Proof. Our proof proceeds by induction on n.
For $n=0$, the claims are clear, where $p_{n}(x)=1$.

Now suppose it is true for n.

It is clear that $f^{(n)}$ is differentiable for $x>0$, so f is $(n+1)$-fold differentiable for $x>0$.

For $x=0$, we have

$$
\begin{aligned}
\left(f^{(n)}\right)^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{(n)}(h)-f^{(n)}(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f^{(n)}(h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{p_{n}(h)}{h^{2 n+1}} e^{-\frac{1}{h}} \\
& =0
\end{aligned}
$$

by the previous lemma. This shows that f is $(n+1)$-fold differentiable even at $x=0$, and in fact it shows that $f^{(n+1)}(0)=0$.

Finally, for $x>0$, we compute

$$
\begin{aligned}
\left(f^{(n)}\right)^{\prime}(x) & =\frac{d}{d x}\left(\frac{p_{n}(x)}{x^{2 n}} e^{-\frac{1}{x}}\right) \\
& =e^{-\frac{1}{x}} \frac{d}{d x}\left(\frac{p_{n}(x)}{x^{2 n}}\right)+\frac{p_{n}(x)}{x^{2 n}} \frac{d}{d x}\left(e^{-\frac{1}{x}}\right) \\
& =e^{-\frac{1}{x}}\left(\frac{x^{2 n} p_{n}^{\prime}(x)-2 n x^{2 n-1} p_{n}(x)}{x^{4 n}}\right)+\frac{p_{n}(x)}{x^{2 n+2}} e^{-\frac{1}{x}} \\
& =e^{-\frac{1}{x}}\left[\left(\frac{x^{2} p_{n}^{\prime}(x)-2 n x p_{n}(x)}{x^{2 n+2}}\right)+\frac{p_{n}(x)}{x^{2 n+2}}\right] \\
& =e^{-\frac{1}{x}}\left(\frac{x^{2} p_{n}^{\prime}(x)+(1-2 n x) p_{n}(x)}{x^{2 n+2}}\right)
\end{aligned}
$$

Therefore, taking $p_{n+1}(x)=x^{2} p_{n}^{\prime}(x)+(1-2 n x) p_{n}(x)$, our result is true.

We have now proven that our f is infinitely differentiable on its domain, and that all of its derivatives are zero. Therefore, its Taylor series is zero.

However, the function is not zero, as seen by taking $x=1$, for which we get $f(1)=1 / e$. This implies that the function is not analytic.

