
18.100A PSET 5 SOLUTIONS

DAVID CORWIN

General Comments

A lot of solutions were correct but significantly more complicated than
what was necessary.

Problem 1

(a). Since I is a compact interval, the hypothesis implies that f(I) is a
compact interval, i.e., f(I) = [c, d] for some real numbers c ≤ d. But then
c ≤ f(x) for all x ∈ I, and d ≥ f(x) for all x ∈ I. At the same time,
c ∈ [c, d] = f(I) and d ∈ [c, d] = f(I), which by the definition of f(I) means
that the values c and d are achieved by f in the interval I. This means that
c and d are the minimum and maximum, respectively, of f on the interval
I.

(b). Let I = [a, b]. As f(I) = [c, d] for some c ≤ d in the reals. Therefore,
c ≤ f(a), f(b) ≤ d.

We now divide into two cases, depending on whether f(a) ≤ f(b) or
f(b) > f(a).

If f(a) ≤ f(b), then the interval [f(a), f(b)] is contained in the interval
[c, d]. But [c, d] = f(I), so every value in [f(a), f(b)] is attained.

If f(b) < f(a), then the interval [f(b), f(a)] is contained in the interval
[c, d]. But [c, d] = f(I), so every value in [f(b), f(a)] is attained.

Problem 2

As the function is continuous on [0, 1], we know it is uniformly continuous
on that interval.
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Now let ε > 0, and let δ > 0 such that |
√
x−√y| < ε whenever |x−y| < δ

and x, y ∈ [0, 1].

Now let δ′ = min(δ, ε).

We now show that for x, y ∈ [0,∞) such that |x − y| < δ′, we have
|
√
x−√y| < ε. To show this, we divide into two cases.

If x, y ∈ [0, 1], they we are done, because |x− y| < δ′ ≤ δ.

If one of x and y is greater than 1, then
√
x +
√
y > 1. We have the

identity (
√
x+
√
y)(
√
x−√y) = x− y. Therefore,

|
√
x−√y| = |x− y|√

x+
√
y
≤ |x− y| < δ′ ≤ ε.

As ε was arbitrary, and δ′ is positive, we are done.

Problem 3

We fix ε > 0. Let δ > 0 be such that lnx < ε for all x ∈ [1, 1 + δ].

If x, y ∈ [1,∞) such that 0 < x− y < δ, then

| lnx− ln y| = lnx− ln y = lnx/y = ln

(
1 +

x− y
y

)
.

But y ≥ 1, so
x− y
y
≤ x− y < δ. Therefore, 1 +

x− y
y
∈ [1, 1 + δ], so

| lnx− ln y| = ln

(
1 +

x− y
y

)
< ε.

As ε was arbitrary, and δ is positive, we are done.

Problem 4

(a). We extend f to a continuous function on [0, 1]. We let f(x) = x sin 1/x
for x ∈ (0, 1], and we set f(0) = 0. It is clear that f is continuous for
x ∈ (0, 1], because 1/x, sin, and x are continuous for such x.
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At x = 0, we note that −x ≤ f(x) ≤ x for x > 0, and lim
x→0

x = lim
x→0
−x = 0,

so the Squeeze Theorem tells us that lim
x→0+

f(x) = 0. This implies that f is

continuous at x = 0.

Now the extension is uniformly continuous by Theorem 13.5, which im-
plies that the original f , i.e., the restriction to (0, 1), is also uniformly con-
tinuous.

(b). We prove uniform continuity. Let ε > 0. We take δ = ε.

But 2|xy| ≤ x2 + y2, so

|xy − 1| ≤ 1 + |xy|
≤ 1 + 2|xy|
≤ 1 + x2 + y2

≤ 1 + x2 + y2 + x2y2

= (1 + x2)(1 + y2)

It follows that

∣∣∣∣ 1− xy
(1 + x2)(1 + y2)

∣∣∣∣ ≤ 1. Therefore, whenever |x − y| < δ,

we have

|f(x)− f(y)| =

∣∣∣∣ x

1 + x2
− y

1 + y2

∣∣∣∣
=

∣∣∣∣ x+ xy2

(1 + x2)(1 + y2)
− y + yx2

(1 + x2)(1 + y2)

∣∣∣∣
=

∣∣∣∣x+ xy2 − y − yx2

(1 + x2)(1 + y2)

∣∣∣∣
=

∣∣∣∣ (x− y)(1− xy)

(1 + x2)(1 + y2)

∣∣∣∣
= |x− y|

∣∣∣∣ 1− xy
(1 + x2)(1 + y2)

∣∣∣∣
≤ |x− y|
< δ

= ε.

This proves that f(x) is uniformly continuous.
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Problem 5

(a). Let ε > 0. Let δ > 0 such that |f(x)−f(y)| < ε whenever |x−y| < δ for
x, y ∈ I (which exists because f is uniformly continuous on I). Let N > 0
such that |an − am| < δ whenever n,m > N (which exists because {an} is
Cauchy).

Then for n,m > N , we have |an − am| < δ, so |f(an)− f(am)| < ε. Since
ε was arbitrary, we have shown that {f(an)} is Cauchy.

(b). Let an =
1

n
for integer n ≥ 1. Then {an} is a Cauchy sequence, because

it converges to 0 in R. Let f(x) = 1/x on I = (0, 1]. If f were uniformly
continuous on I, then {f(an)} = {n} would be a Cauchy sequence. But this
sequence is unbounded, a contradiction.

Problem 6

Suppose that f is uniformly continuous on (a, b), but that f is not bounded
above. Then for any positive integer n, we can choose an ∈ (a, b) such that
f(an) > n. We make such a choice for each positive integer n.

Then lim
n→∞

f(an) = n. We choose a subsequence {bn} of {an} such that

{bn} converges to an element of [a, b]. It follows that {bn} is a Cauchy
sequence in (a, b), so by part (a) of problem 5, we find that {f(bn)}must be a
Cauchy sequence. But {f(bn)} is a subsequence of {f(an)}, so lim

n→∞
f(bn) =

∞, which contradicts the claim that {f(bn)} is a Cauchy sequence. This
contradiction proves the result.

Problem 7

Let f(x) = sinx. We must find n for which our error

|Rn(x)| = | sinx− Tn(x)|

is less than 1/1000 for |x| < 0.5. We have

|Rn(x)| =

∣∣∣∣∣f (n+1)(c)

n!
xn+1

∣∣∣∣∣
for some c ∈ (−0.5, 0.5).
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For all n, we know that f (n+1) is ± sin or ± cos, so |f (n+1)(c)| ≤ 1. There-
fore,

|Rn(x)| =

∣∣∣∣∣f (n+1)(c)

n!
xn+1

∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
<

1

2n(n+ 1)!
.

For n = 4, we have 2n(n+ 1)! = 24(5!) = (16)(120) = 1920 > 1000, so the
error is small enough for n = 4.

In fact, T3(x) = T4(x) in this case, so you only need the first three.

We also note that n < 3 does not work. For x = 0.4, we have sinx =
0.38941 · · · . Now T1(x) = T2(x) = x, and for x = 0.4, this clearly does not
agree in the first four decimal places.

Problem 8

(a). Let f(x) = sinx. We have

|Rn(x)| =

∣∣∣∣∣f (n+1)(c)

n!
xn+1

∣∣∣∣∣
for some c ∈ R.

For all n, we know that f (n+1) is ± sin or ± cos, so |f (n+1)(c)| ≤ 1. There-
fore,

|Rn(x)| =

∣∣∣∣∣f (n+1)(c)

n!
xn+1

∣∣∣∣∣ ≤ |x|n+1

(n+ 1)!
.

It suffices to show that lim
n→∞

|x|n

n!
= 0 for all n. But this was Problem 10

of the first problem set.

(b). We let f(x) =
1

1− x
. We first prove:

Lemma. We have f (n)(x) = n!(1− x)−1−n for all n.

Proof. We use induction on n, starting at n = 1.

For n = 1, this is because f ′(x) = (1− x)−2.



6 DAVID CORWIN

Now suppose it is true for n ≥ 1. Then f (n+1)(x) = (f (n))′(x) =
d

dx

(
n!(1− x)−1−n

)
= n!(−1)(−1 − n)(1 − x)−2−n = (n + 1)!(1 − x)1−(n+1)

by the lemma, as desired. �

For x ∈ (−1, 0], we have

|Rn(x)| ≤

∣∣∣∣∣f (n+1)(c)

n!
xn+1

∣∣∣∣∣ = |(1− c)−2−nxn+1|

for some c ∈ (x, 0]. But 1−c ≥ 1, so |Rn(x)| ≤= |(1−c)−2−nxn+1| ≤ |x|n+1.
Since |x| < 1, we find that this approaches 0 as n→∞.

Problem 9

Letting f(x) = x3 − 2x+ 1, we compute

f(x) = x3 − 2x+ 1

f(−1) = 2

f ′(x) = 3x2 − 2

f ′(x) = 1

f ′′(x) = 6x

f ′′(−1) = −6

f ′′′(x) = 6

f ′′′(−1) = 6

f (4)(x) = 0

f (4)(−1) = 0

Taylor’s formula then tells us that

T4(x) = f(−1)+f ′(−1)(x+1)+
f ′′(−1)

2
(x+1)2+

f ′′′(−1)

6
(x+1)3+

f (4)(−1)

24
(x+1)4.

Plugging in our values, we get

T4(x) = 2 + (x+ 1)− 3(x+ 1)2 + (x+ 1)3.
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Problem 10

Lemma. If p(x) is a polynomial, and m an integer, then

lim
x→0+

p(x)

xm
e−

1
x = 0.

Proof. As we are showing the limit is zero, we may show that

lim
x→0+

∣∣∣∣p(x)

xm
e−

1
x

∣∣∣∣ = 0.

Let n be the degree of p. Then there is a polynomial q such that p(1/x) =
q(x)x−n.

As x→ 0+, we have 1/x→∞, so

lim
x→0+

∣∣∣∣p(x)

xm
e−

1
x

∣∣∣∣ = lim
x→∞

∣∣p(1/x)xme−x
∣∣

= lim
x→∞

|q(x)xm−n|
ex

≤ lim
x→∞

|q(x)x|m|+|n||
ex

But ex grows faster than any polynomial, so the limit is zero. �

We now let

f(x) =

{
0 ifx = 0

e−
1
x ifx > 0

We will show

Lemma. For all integer n ≥ 0

• f is n-fold differentiable.
• f (n)(x) = 0.

• There is a polynomial pn such that f (n)(x) =
pn(x)

x2n
e−

1
x for x > 0.

Proof. Our proof proceeds by induction on n.

For n = 0, the claims are clear, where pn(x) = 1.
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Now suppose it is true for n.

It is clear that f (n) is differentiable for x > 0, so f is (n + 1)-fold differ-
entiable for x > 0.

For x = 0, we have

(f (n))′(0) = lim
h→0

f (n)(h)− f (n)(0)

h

= lim
h→0

f (n)(h)

h

= lim
h→0

pn(h)

h2n+1
e−

1
h

= 0

by the previous lemma. This shows that f is (n+ 1)-fold differentiable even

at x = 0, and in fact it shows that f (n+1)(0) = 0.

Finally, for x > 0, we compute

(f (n))′(x) =
d

dx

(
pn(x)

x2n
e−

1
x

)
= e−

1
x
d

dx

(
pn(x)

x2n

)
+
pn(x)

x2n
d

dx

(
e−

1
x

)
= e−

1
x

(
x2np′n(x)− 2nx2n−1pn(x)

x4n

)
+
pn(x)

x2n+2
e−

1
x

= e−
1
x

[(
x2p′n(x)− 2nxpn(x)

x2n+2

)
+
pn(x)

x2n+2

]
= e−

1
x

(
x2p′n(x) + (1− 2nx)pn(x)

x2n+2

)
.

Therefore, taking pn+1(x) = x2p′n(x) + (1− 2nx)pn(x), our result is true.

�

We have now proven that our f is infinitely differentiable on its domain,
and that all of its derivatives are zero. Therefore, its Taylor series is zero.

However, the function is not zero, as seen by taking x = 1, for which we
get f(1) = 1/e. This implies that the function is not analytic.
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